Smart Operations: A Vision of End-to-End Technology Enablement

Keynote presentation June 2024

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited

Have you implemented any form of Digital/AI solution in your organization?

Request a show of hands

Are you clear about the value generated from Digital/AI initiatives you have undertaken so far?

Request a show of hands

Evolution of technology: The fourth industrial revolution will be unlocked by harnessing the power of data and digital tech

We are now at an inflection point: Tech is evolving faster than our ability to 'catch-up'

Changes in GDP per capita brought about by technological investments, 1000-2000 AD, by country, indexed¹

1. Estimated global GDP per capita in USD, adjusted to GDP in 1000 AD = 1; not exhaustive;

2. Includes Industry 4.0 (debate exists as to whether Industry 4.0 is seen as the Fourth Industrial Revolution or simply as the second phase of the Third Industrial Revolution).

Source: Angus Maddison, "Statistics on World Population, GDP & Per Capita GDP, 1-2008 AD," Maddison Project Database; UBS Asset Management; OECD

Confidential and Proprietary. All rights reserved.

In IR 4.0, the global technology spend is growing rapidly on the back of several digital and tech solutions...

...with rising innovation, adoption, and value potential from the use of these digital and technology solutions

Innovation at the edge...

2.8x

Global data creation from 2020-2025 (64 ZB in 2020 to 180 ZB in 2025)

CAGR for low-code development platform market through 2030

50%

Of user touches will be augmented by Al-driven speech, written word, or computervision algorithms by 2024

... with rise in adoption ...

50 billion

Devices connected to the Industrial IoT by 2025

Of manufacturers will be using **Digital Twins by 2025**

Increase in AI adoption in organization during FY24

... and substantial impact potential

EBITDA potential across Asia via cloud deployment (by 2030)

\$15 trillion

Value at stake from adoption of AI solutions

And lighthouses that adopted 4.0 IR and scaled have achieved a significant impact across key business areas

				lighthouse	lighthouse manufacturing lighthouse
KPIs improvement	ts		Impact observed, % improvement	100	0% Range
Sustainability	নিদ্ধন	GHG emissions	• · · · · · · · · · · · · · · · · · · ·	• •	8-100%
		Waste reduction	•• •• •• •• •• •	* *	4-95%
		Water consumption reduction	••••••		5-75%
		Energy efficiency	★★★ 4822> ***********************************		1-100%
Productivity		Factory output increase	• • • • • • • • • • • • • • • • • • •	*	◆ 4-140%
		Productivity increase		••• • • •	•••• • • • • • • • • • 3-400%
		OEE increase	••••••••••••••••••••••••••••••••••••••	•	2-85%
		Product cost reduction			2-70%
		Operating cost reduction	• * * * * * * * * * * * * * * * * * * *	♦ ♦♦ ♦	• 1-100%
		Quality cost reduction	****	<	2-100%
Agility		Inventory reduction	• • • • • • • • • • • • • • • • • • • •	• •	5-100%
		Lead time reduction		• • • • •	10-100%
		Change-over shortening	• •• • • • • • • • •	• • •	10-100%
		On time delivery increase	•••• •• • • • • • • • • • • • •		1-33%
Speed to market	<u>ل</u> ف	Speed-to-market reduction	• • • • • • • • • • • •	• • •	10-90%
		Design iteration time reduction	• • • • • • • • •	• • •	2-100%
Customization	92	Lot size reduction	 ◆ ◆ 	* * *	40-100%

Looking into Traditional AI, it has several use-cases across the pharma value chain for Gx companies

Non-exhaustive

optimization

Spectrum of 4IR technologies can be deployed to drive impact covering a breadth of Digital/AI solutions

At the same time, new-age technologies like **Gen AI are** expanding the value potential at stake even further

Gen AI is the next new frontier of a long AI journey

Artificial Intelligence, the science and engineering of making intelligent machines

1990's

Machine Learning, a major approach to realize AI

Deep Learning

2010's

1950's 1960's Artificial Intelligence

Is the broad field of developing machines that can replicate human behavior, including all aspects of **perceiving**, **reasoning**, **learning**, and **problem solving**

1970's

0's 1980's Machine Learning

Is a major approach to achieve Al by teaching machines to learn relationships hidden in data, and build approximate models of real systems

2000's

Deep Learning

is a **branch of Machine Learning** that uses '**neural networks**' to **model real systems** by mimicking how the human brain works, utilizing millions of computational 'neurons'

2020's

Generative AI

are a **branch of Deep Learning** that uses exceptionally large neural nets called **Large Language Models** (with 100's of billions of neurons) that can learn especially abstract patterns

Generative Al

Applying these language models to interpret and create text, images, video, and data has become known as **Generative Al**

Understanding the difference between Traditional and Gen AI

Gen AI helps generate new content whereas traditional AI is largely used for problem-solving

Traditional AI

Analytical AI algorithms are used to solve analytical tasks faster and more efficiently than humans - e.g., being able to classify, predict, cluster or evaluate data

Generative AI

Generative AI algorithms are used to create new content on par with humans or greatly enhancing humans — e.g., generating audio, code, images, text, and videos

Segmenting customers

Churn prediction

content

Code generation

Specifically, Gen AI helps unlock <u>3 unique capabilities</u> that "traditional" AI cannot

Gen Al is uniquely able to handle

Insight extraction

Rapidly search large corpora of text, visuals, etc. and identify relevant patterns

2

Content generation

Develop complex data tailored to specific context – in text, visual, sound, etc.

3

User interaction

'Out-of-the-box' humanlike conversational ability incl. context memory

genAl is …		→ While trad. Al …
Faster	Model can be deployed out-of-the-box with only minimal training	Requires use-case specific training before application
More scalable	Same model can be used across multiple use-cases	Requires one newly trained model for each use-case
'Humanlike'	Model can handle much more complex situations and adjust its response accordingly	Is not able create humanlike responses beyond the core task that it is trained to do

In Gx context, Gen AI can enable several high-impact opportunities across the value chain *– top use-cases being piloted by Gx PharmaCos*

Not exhaustive

Research & Development	_=୍©_ Procurement & =୦୦ Supply Chain	Manufacturing & Quality	Commercial & ↓ Market Access	Enabling corporate functions
 Literature review; Rapid review to accelerate experimentation in labs Dossier generation to automate 'version 1' dossier drafts from range of development data Deficiency anticipation to predict potential deficiencies in dossiers Clinical trial acceleration by using RWD to augment site selection/ monitoring Portfolio identification / prioritization leveraging real-time data on competitive / regulatory landscape Specialty portfolio augmentation opportunities with RWE 	 Input cost monitoring (ICM), Parametric clean sheet and Vendor discovery leveraging internal / external supplier data & AA/ML models for real-time insights Procurement assistant to enable value capture from negotiation, PR to PO process, contract mgmt. ContractAl to enable automatic contract analysis and generation Touchless Demand & Supply Planning; e.g., auto-mated triggers / implications for non-APS decisions, auto-generated S&OP / DP / SP as 'second opinion' Supply Chain co-pilot for S&OE control tower to enable real-time monitoring, short-term management of deviations from plan, etc. 	 InvestigationsAI; LLM enabled assistance for augmenting quality of reports and root causes Image-recognition & AA led investigator to surface 'micro-anomalies' in way of working (e.g. sterile operations) Digital Supplier Quality suite; e.g., real-time risk-profiling, on-line perform-ance mgmt., automated CoA generation Real-time SOP assistant to assist queries across all plant SOPs on-the-go Real-time compliance engine; i.e., LLM to crawl 483s, guidelines, third party data to identify future focus areas for compliance 	 Rep Co-Pilot; i.e. Self-access tool to enhance quality of HCP detailing and effectiveness of coverage on ground Digital cockpit to improve quality of performance management in field Content LLM to automate content generation for marketing/ digital channels Tender co-pilot to enhance quality of bids in tender-driven markets (e.g. Germany, Hospital channel) G2N optimizer to minimize value leakage across tender, branded markets 	 Finance – automation of planning & business insighting (e.g. earning call interpretation, industry trends, business plans) HR – GenAl enabled cognitive HR agents to resolve first line queries from employees and automate other transactional processes Risk & Legal – e.g. Automation of Legal processes (auto drafting / reviewing large bodies of legal docs, auto query answering) Tech – Automated coding to scale develop-ment; e.g., auto convert JavaScript expressions into Pythonxxxx

Additional impact potential from Gen AI use-cases

2

Impact potential in overall pharma Industry

\$60-\$110B

3-7 %

3

Gx companies profit uplift potential¹

4-7 pp

1. Basis productivity improvements 3 main areas: operations, commercial and sales, and development and regulatory

Talking about the digital maturity of life sciences companies, the industry has begun to capture value from digital and analytics

Progress made by life sciences companies in adopting and developing DnA¹

Pharma digital and analytics leaders have developed some applications of DnA at scale

Increase in adoption of capabilities like data and tech architecture from 2017

Of total tech investments in long term bets like Web3 and advanced connectivity

Improvement in DnA talent profile and agile operating models from 2017

However, more than 90% of the potential benefit from full scale technology implementation is yet to be realized...

<10% of value potential from full application of DnA solutions realized...

USD Bn (annual figures) 130-190 >90% 6-9 Value potential Value realised

...as many tech-enabled transformations get stuck in the "pilot purgatory"

% respondents Companies piloting/deploying IIoT solutions

...and this stems from <u>9 common challenges</u> that companies confront while scaling digital transformation

transformations require 3 transformations	Challenges faced by each transformation Based on the main obstacles identif	fied in the survey, %	Obstacles	Winners
	Total implementation cost is too high	44		
	Hard to prove business case, no short-term benefits	44	"Just another	"Business led with ROI payback mindset"
	Pilot value is not clear	41	IT project"	
	Too many use cases, not enough resources for everyone	32		
	Lack of leadership support	45	"Focus on IT	"Redesign processes and retrain the organization"
Organization	Lack of talent and knowledge	18	and ignore people"	
	Lack of confidence in IoT architecture 27			"Scalable IoT
Technology	Suppliers willing to subsidize pilot, not deploy	23	"Pilot trap"	
	Too many platforms, not knowing which one(s) to start the test(s)	22		ecosystem"

3 principles could be considered when implementing digital and analytics in your organization

if it positively impacts the bottom line and ensures operational safety

deployed – otherwise, there is no value

process-orientation, and 50% right mindset and capabilities

6 core enablers to "rewire" for an at-scale digital transformation

Strategy

Â

Strategic roadmap

How do we align our digital transformation strategy with our overall organizational aspirations? How should we approach the transformation in a way that ensures value capture and unlocks competitive advantage?

Capabilities

Talent

How do we manage talent to stay ahead of the skill gaps?

🧙 Op model

How do we organize ourselves and teams to deliver on our digital strategy?

Technology

How do we setup a scalable tech stack and infrastructure to support multiple tech/Al/Gen Al use cases and solutions?

How do we to setup a robust data foundation to scale technology solutions across the organization?

Change Management

Adoption and Scaling

How do we design our scaling plan to ensure easy re-usability and scalability across the organization? How do we deliver effective training to support skill building and manage culture change at scale? How do we think about risk and responsible use of technology and AI solutions across the organization?

Various roles are required to setup CoE; most of the roles already exist and requires re-deployment, only a few needs external hiring

Illustrative example

2 key considerations for pharma companies looking forward

1

Ensuring enterprise-wide scalability of your core digital solutions

2

Making initial investments in technologies like gen AI to unlock its value potential

00

Prioritize by business domains and not use-cases; create an investment plan

Value-backed planning to **identify quickwin use-cases**; **then launch 1-2 pilots**

Ensure **adequate resourcing** (data/ tech/ manpower readiness) for the launch

Build a dedicated **digital talent team** bench and develop **meaningful career paths**

Conduct **period check-ins** for course corrections, ensuring org. commitment